a2 United States Patent

Burris et al.

US009412071B2

US 9,412,071 B2
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(62)

(60)

(1)

(52)

(58)

RULES EXECUTION PLATFORM SYSTEM
AND METHOD

Applicant: Computer Sciences Corporation,
Irving, TX (US)
Inventors: Richard S. Burris, Dallas, TX (US);
Johan Gielstra, Austin, TX (US);
Steven J. Westerholm, Windsor, CT
(US); S. Alex Carmack, Coventry, CT
(US); Sunil B. Pandit, Austin, TX (US);
Bruce E. Glaze, Henderson, TX (US)

COMPUTER SCIENCES
CORPORATION, Irving, TX (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/599,393

Filed: Jan. 16, 2015

Prior Publication Data

US 2015/0161510 A1 Jun. 11, 2015

Related U.S. Application Data

Division of application No. 13/154,353, filed on Jun. 6,
2011, now Pat. No. 8,965,827.

Provisional application No. 61/469,801, filed on Mar.
30, 2011.

Int. CI.

GO6N 5/02 (2006.01)

U.S. CL

CPC ..o GOG6N 5/027 (2013.01); GO6N 5/025
(2013.01)

Field of Classification Search

CPC e GO6N 5/02

See application file for complete search history.

132

DESIGN TOOL

(56) References Cited
U.S. PATENT DOCUMENTS
6,539,404 Bl 3/2003 Ouchi
6,928,487 B2 8/2005 Eggebraaten et al.
7,386,505 B1* 6/2008 Rothccccocevvvvviriicns 705/38
7,631,299 B2 12/2009 Kannenberg
7,809,698 B1 10/2010 Salz et al.
2002/0129059 Al 9/2002 Eck
2005/0060365 Al 3/2005 Robinson et al.
2006/0020530 Al 1/2006 Hsu et al.
2006/0235935 Al 10/2006 Ng
2007/0203881 Al 8/2007 Schaad et al.
2008/0168109 Al 7/2008 Gauray et al.
(Continued)
OTHER PUBLICATIONS

PCT Search Report and Written Opinion for corresponding applica-
tion No. PCT/US2012/031644, dated Jun. 15, 2012.

(Continued)

Primary Examiner — Alan Chen
(74) Attorney, Agent, or Firm — Nelson Mullins Riley &
Scarborough, LLP

(57) ABSTRACT

Methods, mediums, and systems are described for providing
aplatform coupled to one or more rules engines. The platform
may provide runtime rule services to one or more applica-
tions. Different rules engines may be used for different types
of rules, such as calculations, decisions, process control,
transformation, and validation. Rules engines can be added,
removed, and reassigned to the platform. When the platform
receives a request for services from an application, the plat-
form selects one of the rules engines to handle the request and
instructs the selected rules engine to execute the rule. The
rules engine may be selected automatically. The platform
may be implemented through a service-oriented architecture.

8 Claims, 21 Drawing Sheets

SYSTEM
100

104

[

106

| APPLICATION || APPLICATION | | APPLICATION |

SHARED RULES
REPOSITORY

130

RULES EXECUTION PLATFORM

DATABASE

12

124

/

17

| INTERFACE ‘
118

INTERFACE | INTERFACE
118

[/
|

| RULESENGINE | RULES ENGINE || RULES ENGINE

L Ng

US 9,412,071 B2
Page 2

(56)

2008/0196002
2008/0256047
2008/0288235
2009/0044096
2009/0099981
2009/0113387
2009/0125500
2009/0138258
2010/0017185

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al*
Al
Al

8/2008
10/2008
11/2008

2/2009

4/2009

4/2009

5/2009

5/2009

1/2010

Koster

Dettinger et al.

Dettinger et al.

Gupta et al.

Heuler et al.

Ziegler

Arendsetal. ..o 707/5
Neale

Bade et al.

2010/0042425 Al
2010/0082523 Al*
2010/0082954 Al*
2010/0106546 Al
2010/0121805 Al
2011/0219355 Al*

2/2010
4/2010
4/2010
4/2010
5/2010
9/2011

Watson et al.

Lim
Lim
Sproule

706/60
713/1

Haynes et al.

Matsumoto

717/106

OTHER PUBLICATIONS

CSC Brochure, Visual Product Modeling System (VP/MS), Crack
the Code for Administering Calculations and Business Rules, 2009.

* cited by examiner

U.S. Patent Aug. 9,2016 Sheet 1 of 21 US 9,412,071 B2

2 SY1SOT0EM
/
DESIGN TOOL
134
104 106 108

/ / /

APPLICATION || APPLICATION APPLICATION

DATABASE
128
\
SHARED RULES 102
REPOSITORY)
130
- RULES EXECUTION PLATFORM
DATABASE
122 124 126
/ / /
INTERFACE INTERFACE INTERFACE

116 118 120

/ / /

RULES ENGINE RULESENGINE || RULES ENGINE

FIG. 1

U.S. Patent

Aug. 9, 2016 Sheet 2 of 21
INITIATE DESIGN TOOL 132 210
\
SELECT DATA ~—220
\
DEFINE RULES ~—930
\
ASSOCIATE RULE WITH
PREDETERMINED RULES ENGINE [™-240
Y
TRANSLATE RULES INTORULES
ENGINE SYNTAX ™-250
\ 4
STORE TRANSLATED RULE
IN RULES REPOSITORY ™-260

FIG. 2

US 9,412,071 B2

U.S. Patent Aug. 9,2016 Sheet 3 of 21 US 9,412,071 B2

RULES EXECUTION PLATFORM

102 INITIATED 300
Y
RECEIVE REQUEST TO
EXECUTE RULE 310
A 4
RETRIEVE METADATA
ASSOCIATED WITH RULE ™-320
Y
IDENTIFY RULES ENGINE
ASSOCIATED WITH RULE ™-330
Y
INITIATE RULES ENGINE N

\

RULES ENGINE RETRIEVES RULE
™-350

Y

RULES ENGINE EXECUTES RULE
™-360

Y

RECEIVE RESULTS FROM
RULES ENGINE ™-370
Y
TRANSMIT RESULTS
TOAPPLICATION 380

FIG. 3

U.S. Patent Aug. 9,2016 Sheet 4 of 21 US 9,412,071 B2

400
RULE CHARACTERISTICS
420
USERPROFILE Ny1g /
RULE TYPE

RULE INPUT DATA N30

CALCULATION <491 CONFIGURATION ™~ 499

RULE OUTPUT DATA N 440

DECISION ~~123 DEFINITION <404

USERINPUT g0

PROCESS [~wgp5 | TRANSFORMATION g5

RULE SYNTAX <450

VALDATION ~ [~wgo7 | PARAMETER Sy

RULE SEMANTICS [~ y70

430
81 RULE DESCRIPTION 4
/

CASE MANAGEMENT CORRESPONDENCE [~_43) | DISTRIBUTION
COMPENSATION LLUSTRATIONS [N-gg5 | UNDERWRITING
484 486

PRODUCT Nogg7 | ADIUDICATION g

FIG. 4

US 9,412,071 B2

Sheet 5 of 21

Aug. 9,2016

U.S. Patent

(u)

INION3
=1 "3y

)

NN
-1 "Iy

(1)

INON3
W1 "3y
005

705" ALI¥ND3S STINY
206" AMYNOILDIQ ¥LYQ STTNY
95 51
403$3I00Hd N3ddYI
IInY Ny AHV
ol (U)¥0SSTN0¥dNIISIATINY | ~TIS
915 916
403$300¥d N3davIl
LOVYINGD
il CLLI) N9 Brvitriveit] e I
) @ yoss3o0udNaisIa T | 0K N9ISIa 31Ny
95~ 91
¥03S300¥d Y3ddYI 7
IInY Ny AHV %l
) (1) 408S3008d NoISTIA TNy~ |06

d01/a3 SINTVA Q3IM0TTY SF1NY

U.S. Patent Aug. 9,2016 Sheet 6 of 21 US 9,412,071 B2

600

/
COMPUTING 818
DEVICE /’\Q
processor 70 (NSO

614 e

/ CORE) APPLICATIONS ||

VISUAL DISPLAY 604 620
DEVICE MEMORY o
REP H
e 102
= VIRTUAL !
INTERFACE : H.

N |1 MEINE e DESIGN |,
I:::::::::::::::::::: TOOL N 130
| HARDWARE |
| ACCELERATOR IM-g0g
e J

NETWORK

NTERFACE [f~eos || REPOSITORY Ny

INPUT

DEVICE 610 05 MNeex
N

FIG. 6

U.S. Patent Aug. 9,2016 Sheet 7 of 21 US 9,412,071 B2

713

700 /
SERVICE PROVIDER

600
/
COMPUTER
714
/
TARGET ENVIRONMENT

FIG. 7

US 9,412,071 B2

Sheet 8 of 21

Aug. 9, 2016

U.S. Patent

008 .
\ 8 Ol

UOLEI00107) $80UIS JajnduIoy) @

708

\

- &= 09 ad
CE PAAN 1Y)

o0 g

{08

\
atog bl
e oo ekl seye)
« B{Buiepop ey ¢ e ce-oa-d-Bi-¢oi-BiN\oRieywd:er -0
djoH mopuipy uny Joyebiney 1alold yoeag aebiney 1p3 9|4
XEE Y3 8sdipg - bujapop 3nye)

US 9,412,071 B2

Sheet 9 of 21

Aug. 9, 2016

U.S. Patent

008

6 Old

uonelodion) $3ousing Jeindwon

=)

0] 09 ¢
¥02g 09
006 BU0H 09
[dnosg) sjealy I
O=a€ nven_Mm ”_m_ meQmDE
808 opg 008
208

\

lacees @ T 03 soie

« B(Buippopy any @)

e pF-Bi gD

pidB.8:

dioH mopuipy Uy 108014 yoJesg mg_\az 10g 94

X3ae

QS 9503 - Buligpoy Ay ey

U.S. Patent Aug. 9,2016 Sheet 10 of 21 US 9,412,071 B2

r

S) H=)E3
Create Group
This creates new group for Master Data Dictionary
Name of the Group: | Contract ~
1004

1002

1008 1008

V4 [
O) [Next>][Enish][Cancel |

© Computer Sciences Corporation

FIG. 10

1000

U.S. Patent Aug. 9,2016 Sheet 11 of 21 US 9,412,071 B2

IE Import Data [LBIX]
Import Data
This wizard imports data for the new group
Schema: || ~ || Browse
1102
11}08 11110 1112
7 7 7
<Back Next > Finish Cancel

© Computer Sciences Corporation

FIG. 11 "

U.S. Patent Aug. 9,2016 Sheet 12 of 21 US 9,412,071 B2

© Data Dictionary Definition @

This wizard imports data for the new group

Group: |ACORD

~ACORD \ ~ DATADICTIONARY- ~
Annuity énnuity
Coverage 1902 overage 1208
CovOption = - CovOption el
Life
Policy
Requirements
SubstandardRating 1204
1208
/4
) [<Back][Enish][Cancel)
© Computer Sciences Corporation ‘\

FIG. 12 e

US 9,412,071 B2

Sheet 13 of 21

Aug. 9,2016

U.S. Patent

008

€l Ol

uonelodion) sauang Jaindwo) @

(=1

Gujeypiepugisang -
Suawaunbey -
forod -
N
uopdoro) £
ofeiroy -@
finuy -
Jequoder
O-.®& &Gw_mm u_n M WQSE
B8 oo 08
|
eeec s U T D\ a3 seny el

S (e EE

-q.ox-Q-Bi.oi.-Did@-Bi
ey mopuipy Uny joslold oieag sjeBiaeN Ip3 8|

XEE

308 950103 - Bulppoyy Ny el

U.S. Patent Aug. 9,2016 Sheet 14 of 21 US 9,412,071 B2

& Define Domains E]
Define Domains
This wizard defines the BD, BRD and BRSD{optional) for a rule.
Business Domain | New Business |V|/'—1402
Business Rule Domain [Workflow [1404
Business Rule Sub Domain | Case Assignment |v|/"_1406
1408
]
/4
@) [Next |[FEinish][Cancel |
© Computer Sciences Corporation ‘\
1400

FIG. 14

U.S. Patent

Aug. 9, 2016

Sheet 15 of 21

US 9,412,071 B2

& Business Rule Domain Data Dictionary E]
Define BRD Data Dictionary
This wizard defines the Business Rule Domain specific data
DATA DICTIONARY 1502 BUSINESS RULE DOMAIN 1504
B> Contract B Contract
B Anngity . B+ Carrier Appointment
BF- Carrer Appoiniment - CompanyProduceriD
-~ CompanyProducerlD E-= Workflow
- Coverage B LOBFiel
BF- CovOption |
v L ||, E e
it i > o
- Egh(l?ilrements &, AADFied
3 S gstandardRating o0 - NEAAGentl
B S < L. NBAlssueDate
E-= Workflow .
i - B Other
B LOBField :
k-~ Case Manager Queue LOB - A ProcessD
L~ Underwriter Queue LOB P LogonRule
B, AWDField _
t-- NBAAgentld
i NBAlIssueDate
1502 1504
)]
{ [
@) [<Back][Net> [Fnish][Cancel |

© Computer Sciences Corporation

FIG. 15

1500

U.S. Patent Aug. 9,2016 Sheet 16 of 21 US 9,412,071 B2

(© Define Other Variable EEX

This wizard defines Other variables for a BRD

CONTRACT / WORKFLOW

= Contract
i B Carrier Appointment
g .. CompanyProducerlD
EH? Workflow
E- LOBField

L. Case Manager Queue LOB
L= Underwriter Queue LOB
&, AWDField _

t-- NBAAgentld

t-- NBAIssueDate

OTHER
1606
1504 (Dee]
S~
Variable Name: 1602 | (Add_]
@D [<Back][Next>) [Finsh][Cancel]
© Computer Sciences Corporation ‘\
1600

FIG. 16

US 9,412,071 B2

Sheet 17 of 21

Aug. 9,2016

U.S. Patent

00/} <

008

JAANIE

uones0dion) seouaig Janduio) &

-
(11983004d=--,
Y30 o=
(58800.de=-, 607 818N JeAUBPUN--, !
RY0 &2 407)unouy 8084e.--i !
wgzgwmﬂ@%%%&u-_ | 901 %%o_m@@%\,_“_w_mmwn;} m_
— o | >
- 5%2&%8_%%5_% i & vOLl o g | o
o_ao%oiéagoowm /] g_uwgﬂwmﬂmcwmﬁmwn,m mm
wawuoddyouey B | | [0~ o)) v fojog 84 |
B B2 | | 4 _ac_/,g: 0d B4
c\m *oéhzooo
o< 08NS |[o - [0gg[q0 L= Mewopoig Bieqo)
. [N/
PN (Feg) A4 09 98 B
9Ll
A
s \
B |
B | :Ai0Beje0 ong i
B _ p A \
B | Kiobejen)
[~ JUBLIUBISSY 85€7) | :uiewog gng 8iny ssauIsSng ;
~ : _~lueluissy 8se) -
_ MOPHOM | c_me_oo aIny ssausng ||z, —" lopoi b
[~ $3aUISNg Ma | :UIBLIOQ $SAUISNg SSOUSNE o .
= [cawubissyesena)la - . & @ x J0dx3any L N
« B{Uoguyag sopny @)@ O Vi -V - i -HiFPB]
Jojessiulipy 40 607 disH MOpuIM YJesg Jop3 psig Uy 0idepod 1pd 84
XEE ®(00] bunumapun el

US 9,412,071 B2

Sheet 18 of 21

Aug. 9,2016

U.S. Patent

008} 8l Ol
/ uonelodio?) $30Uaig Jandon

] 1og~ PRIROUE] GEY [+l Ewg\g% Loppuog) 7 1.0 ddy panouddy pajeny-uoy

068! 1q ddy parosddy pajey -4

11195 anang Jayumapun -4

%3] 1@ Ay paroiday perey-UoN -4

10 Sie)S aA0iddy ddy eu -

018l 70, Pevey 4ay poROIEy [a] Em@gm lopipuog | S9|0BL UOISIA(

8zel
Ty
. y081
8081 p A .
ddy panoudd 8%2_@%:8&2
¢ 1 00y paA0IOCY PoYeyt-UON -
i 98l s pajey J0 ddly parouddy =]
\ \ 1@ ddy parouddy pajey -~ “
_\ | L | | . -l o o @E&f@@ﬁ@“ | ”
[eAOIdAY JO [9A37 _,--,_.omm.o:-<vm_,m-.<h_ T
8181 _ _ [ponaiddy] J8i14 uorysodsig ~™N- uonedddy [eu] 10N S|
betl 081" : e 1 sne mm>o_&<&<_§
i _
— woreayddy ey w =
_ 70l uoneoljday panosddy | ALLBN UOIYIPUOY LRI LB _m>o_agd__mcw=__%< g

US 9,412,071 B2

Sheet 19 of 21

Aug. 9,2016

U.S. Patent

V6l Ol

g6/ 914 0L uonelodion $sausig Jajnduwion 6
.H, <108830008 />
</ AT0IACEDDENOPANANBINTT ,=0TI5MURIRGUOTSTOR ,[nd1n0,=0d43 ,AT4Aq6EDRNYPANARTENTT ,=DT Z0SS3000S)
CMTOIATEDDRROPTNASOBNTT =T Io¥IRIRAU0TSTORY L INANT =541 ,M0AQGPDANYPINAQTONTT ,=PT 08580008
<, Kymnuuy, =Do1ssrdia ,AT0AAQEDDINGPANAGBDNTT ,=QI7oHUeTRqUOTSTIRY ,I0ANT,=50R) ,ATQIAGDBENGPENANYENIT ,=DF TT8)UOTSTIR>
<MT0ZAGDBTNOPTNAOUBNIT ,=pT SHOYUOTSTORD
CIRIRJUOTSTR />
</ ATOA0GDDINIPTAODG R #e1RpaTNI*JUSIUDTSSY 98], =]31Y ,JUSLISTTRIRCRTNY:RIRPRTNT, =00A) TSK OUURI[EIREATNT
<d0dzn0,=odA ueTequots 08 ,AT0IAGDDINOPTNASEENIT ,=PT WRJRqUOTSTORD
CRIBJUOTSTIR />
</ ATOA0GDDINIPANAROLGTS #e1RPaTNI"JUSIUDTSSY 95E),=]31Y , JUSLSTARIRCRTNY:RYRPaTNT, =a0k) TSK ToUURI[RIRTNT
CATOAQGEDENPAANBENT T, =URI24U0TSTOBCHEU ,AT02AGDDTNOPANABRNTT =P WRIRqUOTSTORDS
CRIBJUOTSTIR />
</ NRAGMOSIATIOPTTA04T00] #81RPATNI"USIIDTSSY 958),=]87Y , JUUSTTRIRCATNY BIRaTNT, =00k TSX TOUUSYIEIREATIT
< MT04Aq§bbENOPaNABBDNTT IR TRqUOTSTORCIRaU AT AAG5DDENOPANAQBDRTT ,=PT WRIRJUOTSTORP>
<MT0895DDRNIPTIA-BENTT ,=PT ,JUSIUBTSSY anenj Tbeuey] a9e),=8UeU , 6007 /EIRPETAT /M1 /W0 " 080" DS /2033, =R JEpRTAL SUTUK
46007 /3TqBIUOTSTABP /AN /100 * 080" BT /033U, =HT(RILOTSTORP: SUTIX
(B0UBISUT-BUSUDSTHY /1007 /0" ¢A* w131, =TSX: SUTIX 9TNYBTCRIUOTSTOR]: BTARUOTSTORD
<CuI10%H,=butpoots (' T,=U0TSIBA TUKS)

US 9,412,071 B2

Sheet 20 of 21

Aug. 9, 2016

U.S. Patent

uonelodion ssausing Jeindwo)
61 91401 <SMOYUOTSTIRD/>
it TTRUITSTORD)>

<108830008 />
0uq 837T,=uoTssaadxa ,AT02Aq6DBINYDANARBDNIT ,=Q170NIETRAUOTSTOR ,I0GIN0,=00KY ,ATOZAQEDDINOPENAOKENIT ,=PT 108590008
10T9e0TTddY, <uotsseadxe ,AT0IAQ5EDINOPINASOENTT ,=(TJoNIRIEAUOTOTORD ,INGNT <0043 ,ATOAQGEDINOPTRARTENIT ,=PT 108890008
<ATOIAGODINGPRIAGBINTT =170 TEqUOTOTO |, I0dNI =043 ,ATOINTGODINGPEAQTENTT ,=DT T[3OUOTSTORD>
<MT03A06DDINYPIRANYDATT ,=pT SHOJUOTSTOBP>
¢SHORUOTSTOR, >
<[T3UOTSTRP />
<108830008 />
</ AT080GBBRNIPARBENIT ,=TJ0MUBIRGUOTSTORD ,I0dN0,=5043 ,AT02AqEbDANOPANASYBRTT ,=PT 108530018
<MT03Aq50bNPaNABPDNTT ,=(JouUeTegUOTSTRD ,IndNT,=0dk3 ,AT0aAqsbDINYpaNA-(BNTT ,=PT To8saocnsy
ITCRTIeY,=U0Tssa1dxo ATOQEEDIRYPANABDNIT ,=(13oMmeTequoTsToap ,J0dnl,=0dk1 ,AT0a0gbbINgPaNASLNLT ,=pT TTONOTSTORD
<MT03A06DDINYPANA-TONTT ,=pT SHOYUOTSTOBP>
¢SHOJUOTSTIRP />
<[T3UOTSTORP >

T

V61 014 WO

US 9,412,071 B2

Sheet 21 of 21

Aug. 9,2016

U.S. Patent

J61 Ol

uoielodion $aousiag Jandwon @
<OTNYRTARIVOTSTIR] STCRIUOTSTORD />
¢SHONUOTSTIBD/>
<TTAOUOTSTOR >
¢10853000 >
</ ATOIAGDOINYPANARDDNTT ,=Q[JOMIRIRGUOTOTORD ,d0d1N0,=00K) ,AT0IAGEDDRNOPANA-UDNTT ,=PT 10885000
) J0BI3U0),=U0TSS32d%9 ,AT0IAQEDDINOPTNASEDNTT ,=(TT0MNRIRAUOTITRD ,INANT,=0dK3 ,ATOAGEEDINYPANASUDNTT ,=pT 108830008
<ATOAGGDDENOPINAQBDNIT ,=QTI0HuLIqUOTaTd |, I0ANI =oK% ,ATCAAQEDDINGPANA-UDNIT =P T[&)UOTSTORDS
<MT0AAGEDDTNGPTNASUBYIT ,=pT SHOJUOTSTORDS

T

861 914 NOd4

US 9,412,071 B2

1
RULES EXECUTION PLATFORM SYSTEM
AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This applicationis a division of U.S. patent application Ser.
No. 13/154,353, filed on Jun. 6, 2011, which claims the ben-
efit of U.S. patent application Ser. No. 61/469,801, filed on
Mar. 30,2011 and entitled “Rules Execution Platform System
and Method,” the entire disclosure of each of which is hereby
incorporated by reference as if set forth verbatim herein and
relied upon for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright whatso-
ever.

FIELD OF THE INVENTION

The present invention relates generally to a platform for
facilitating communication between one or more applications
and one or more rules engines.

BACKGROUND OF THE INVENTION

A rules engine is a software system that executes one or
more rules in a runtime environment. A rules engine may be
provided as a component of a larger system in order to handle
the processing of rules required by other components of the
system. The syntax used to communicate with a rules engine
typically varies with each different rules engine.

SUMMARY OF THE INVENTION

The present invention recognizes and addresses the fore-
going considerations, and others, of prior art construction and
methods.

In that regard, one aspect of the present invention provides
a computer-implemented method for facilitating communi-
cation between one or more applications and one or more
rules engines. The method comprises providing a platform
protocol including a platform syntax for defining a rule. The
platform protocol comprises an association between prede-
termined criteria relating to the rule and predetermined one or
more rules engines. The method further comprises defining
rules according to the platform syntax, wherein each rule is
associated with metadata, and associating each rule with a
predetermined rules engine based on application of the pre-
determined criteria. The association of each rule with a pre-
determined rules engine is stored in the metadata associated
with the rule. The method further comprises translating each
rule defined in the step above into a rules engine syntax for the
predetermined rules engine and storing the translated rule
from the step above and the associated metadata from the step
above in a rules repository.

In another embodiment, a request may be received from an
application indicating that a first rule should be executed. The
request may include the first rule or a description of the first
rule. Metadata associated with the first rule may be retrieved
along with a translated rule for the first rule. The metadata

10

15

20

25

30

35

40

45

50

55

60

65

2

may describe a predetermined rules engine associated with
the first rule. The predetermined rules engine may be identi-
fied based on the metadata, and the first rule may be trans-
mitted to the predetermined rules engine for execution. The
predetermined rules engine may execute the first rule to gen-
erate a result. The result may be transmitted to the application.

In other embodiments, electronic device readable medi-
ums and systems are provided for facilitating communication
between one or more applications and one or more rules
engines.

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention,
including the best mode thereof directed to one of ordinary
skill in the art, is set forth in the specification, which makes
reference to the appended drawings, in which:

FIG. 1 is a diagrammatic representation of a software sys-
tem in accordance with an embodiment of the present inven-
tion;

FIG. 2 is a flowchart depicting an exemplary technique for
defining one or more rules in accordance with an embodiment
of the present invention;

FIG. 3 is a flowchart depicting an exemplary technique for
executing one or more rules in accordance with an embodi-
ment of the present invention;

FIG. 4 depicts exemplary rule characteristics for use in
accordance with an embodiment of the present invention;

FIG. 5 is a flow diagram depicting an exemplary technique
for translating a rule from a platform syntax into a rules
engine-specific syntax in accordance with an embodiment of
the present invention;

FIG. 6 depicts an exemplary electronic device suitable for
use in accordance with an embodiment of the present inven-
tion;

FIG. 7 depicts an exemplary network implementation of
the system of FIG. 1 in accordance with an embodiment of the
present invention;

FIGS. 8 through 18 depict exemplary graphical user inter-
faces to be used in connection with the exemplary technique
for defining one or more rules of FIG. 2; and

FIGS. 19A, 19B, and 19C illustrate an exemplary rule
represented as an XML metadata file in accordance with an
embodiment of the present invention.

Repeat use of reference characters in the present specifi-
cation and drawings is intended to represent same or analo-
gous features or elements of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Reference will now be made in detail to presently preferred
embodiments of the invention, one or more examples of
which are illustrated in the accompanying drawings. Each
example is provided by way of explanation of the invention,
not limitation of the invention. In fact, it will be apparent to
those skilled in the art that modifications and variations can be
made in the present invention without departing from the
scope or spirit thereof. For instance, features illustrated or
described as part of one embodiment may be used on another
embodiment to yield a still further embodiment. Thus, it is
intended that the present invention covers such modifications
and variations as come within the scope of the appended
claims and their equivalents.

US 9,412,071 B2

3

Methods, mediums, and systems are described for provid-
ing a platform coupled to one or more rules engines. The
platform may provide runtime rule services to one or more
applications. As should be understood, different rules engines
may have different functions and/or organizations that may
make the respective engines more suitable or efficient for use
with respective different types of rules. Thus, for example, a
given rules engine might be better suited for “if/then” type
rules, whereas another rules engine might be more suitable
for mathematical-based rules. In presently-described
embodiments, a system associates rules with rules engines at
the time the rules (either at the time of definition or creation of
an executable) are created, so that when an application calls
the rule, an execution platform executes the rule via a prede-
termined rules engine. The association between the rule and
the rules engine occurs within the system according to a
predetermined criteria, without the application user or rule-
creator needing to know which rules engine is or will be used.
In the presently-described embodiments, the association
between rules and rules engines is defined by the application
user, and may be triggered by rule type or service environ-
ment as described below, but this association could be based
on other criteria, such as specific functions performed by the
rule.

In this regard, and referring to FIG. 4, the presently-de-
scribed embodiments classify rules as decision rules 423,
parameter rules 428, process rules 425, or transformation
rules 426, but it should be understood that such classification
can vary and is provided herein for purposes of example only.
For example, decision rules 423 may define specific criteria
that are used to control the behavior of a business service or
application. Examples of rules of decision rule type 423
include conditional processing that is embedded within a
business process or function; role-based access control poli-
cies that control user or system access to protected resources;
cross-field edits; and data format and data type syntax. Rules
involving calculations 421 may be classified as decision rules
423 or may be categorized separately should system 100 be
configured so that one rules engine handles calculation rules,
while another handles decision rules.

A rule of parameter type 428 describes the terms that are
significant to a business process. Rules of the parameter type
may take the form of, for example: insurance product defini-
tions; rate factors; company constants; and configuration
files. A rule of the process type 425 may govern a business
process or workflow activity. Examples of rules of the param-
eter type 425 include: underwriting case routing; service and
process choreography; and user interface navigation. Addi-
tional examples of parameter-type rules may include configu-
ration 422, definition 424, and validation 427 rules. A rule of
the transformation type 426 may govern the transformation of
data from one format to another. Examples of rules of the
transformation type 426 include data format conversions and
object maps.

It should be understood that the types of rules described
above are exemplary in nature and that there may be addi-
tional or fewer rule types depending on the desired configu-
ration of the system. In the present embodiment, for example,
calculation and validation rules are included in the other four
types of rules described above, but it should be understood
that these may be considered as separate rule types.

In one presently-described embodiment, a design tool is
used to create rules, the execution of which is then handled by
a rules execution platform. The design tool is configured to
identify a user based on information provided by an external
system, and determine which of a predetermined set of roles
is associated with the user’s identity. Parameters associated

20

25

30

40

45

4

with these roles define which, if any, predetermined type of
rule the user will be permitted to construct using the design
tool. For each rule type, the design tool provides certain
options regarding inputs, outputs, and functions available to
the user to select in building rules of that type. The system
allows a user to select which type of rule the user wishes to
build, and optionally may restrict the user’s choice based on
the user’s role, and, upon receiving the user’s choice, presents
the user with a set of rule-building options associated with
that rule type. The system may then deploy the rule, i.e.,
translate the rule to an executable form. The environment is
comprised of one or more applications running on one or
more system servers dedicated to a service or function per-
formed by an organization. In exemplary embodiments, the
system may define which rules engine will be used to execute
a given rule, based on rule type and/or environment. Thus,
when the environment is identified at deployment, the system
translates the rule into the syntax of the corresponding rules
engine, and the system later executes the rule using that rules
engine when an application calls the rule.

Accordingly, based on a predetermined relationship
between a user’s identity and a set of functional roles, the
system determines what type(s) of rule the user is permitted to
create. The relationship between the user’s identity and a set
of'system roles determines whether the user has permission to
create, modify, test, and/or deploy rules. Based on the type of
rule the user creates and/or the environment in which the rule
will be used, the system determines a rules engine to associate
with the user-created rule. The association of individuals to
system and functional roles, and thereby the association of
individuals with rule types the individuals may be allowed to
create within the system and the association of rule types
and/or environments to rules engines, are effected as part of
the construction of a system for a business entity or other
organization and may be selected at the organization’s dis-
cretion. The presently-described system may be configured
with a predetermined set of roles, each independently identi-
fied in a system database. The number of roles, rule types, and
environments, and the manner in which they are identified,
are not in-and-of-themselves critical to the present invention,
and the system may be configured according to the organiza-
tion’s wishes. Also as part of the construction process, and at
the organization’s discretion, each of the functional roles is
associated with one or more of the predetermined rule types,
so that association of a rule-constructing user with a func-
tional role determines the type of rule the user is permitted to
construct.

With its internal computer system, the organization iden-
tifies each user in some manner, e.g., an identification number
or acronym. An administrator of the organization may be
provided sufficient rights to update a table in the system
database that associates these individual identities with sys-
tem and/or functional roles, thereby defining whether a user
has permission to create a rule and, if so, which rule types an
individual is permitted to construct. For example, a given
user’s function within an organization that operates one or
more applications may involve the creation of rules that are
all, or predominantly, of a certain type, for example transfor-
mation rules, while another user that operates the same or
different applications may perform functions requiring that
user to create different rules, for example decision rules. In
this instance, the organization may define a first functional
role having the ability to create only transformation rules, on
one hand, and a second functional role having the ability to
create only design rules, on the other. The organization
administrator, in turn, assigns these two users to their respec-
tive functional roles in the database. The administrator also

US 9,412,071 B2

5

assigns system roles to the users that identify whether the
respective user has permission to access, create, modify, test,
and/or deploy rules of the type associated with that user’s
functional role(s).

When a given user accesses the design tool through the
organization’s computer system, the computer system’s oper-
ating system identifies the user and passes to or gives access
to that identity to the design tool. The design tool retrieves
identifiers for the system role associated with the user from
the database, thereby determining what rule design features
and functions are made available to the user. When the user
thereafter uses the design tool to access or create a rule, the
design tool presents the user with an interface configured to
thereby allow the user to access, create, or modify rules only
of'the type associated with the user’s functional role or, if the
user’s functional role is associated with multiple rule types,
presents the user with an option by which the user can select
a rule type. Once the user makes the choice, the design tool
presents the user with the interface configured for the selected
rule.

The system database also has a table that associates rule
types and/or environments with rules engines. This associa-
tion is also part of the system construction for the specific
organization. That is, the organization may have its own pref-
erences for use of a given rules engine associated with the
system, as discussed below, for rules of a given type and/or for
use in a given environment, and the system database has a
table that associates each rule type and/or each predefined
environment with a respective such rules engine according to
the organization’s instructions. After a user defines a rule
through the design tool and at the time the organization
deploys the rule to a given environment, the system checks
this table and determines the rules engine associated with the
rule type and/or environment, translates the rule to the syntax
of' the identified rules engine, and associates the newly-trans-
lated rule with the associated rules engine through metadata
associated with the translated rule. When the platform there-
after receives a request for services from an application
requesting the rule’s execution, the platform identifies the
rules engine from the metadata and instructs the selected rules
engine to execute the rule. Rules engines can be added,
removed, and reassigned to the platform. In one embodiment,
the platform is implemented through a service-oriented archi-
tecture.

FIG. 1 is a diagrammatic representation of a system 100
comprising a rules execution platform 102 and a design tool
132. System 100 may include, or may operate in conjunction
with, one or more applications 104, 106, and 108 that utilize
the rules execution platform 102, as described below.

System 100 also comprises, or may operate in conjunction
with, one or more rules engines 116, 118, and 120 operatively
connected to the rules execution platform 102. In one
embodiment, the connection between the rules engines 116,
118, and 120 and the rules execution platform 102 may be
accomplished via respective interfaces 122, 124, and 126.
Although not illustrated, it should be understood that each of
applications 104, 106, and 108 may also be associated with an
interface through which another application or system may
interact with the respective application.

Each of the applications 104, 106, and 108 may be a soft-
ware application configured to transmit a request that a rules
engine execute a rule. It should also be understood that each
of rules engines 116, 118, and 120 are software systems
configured to execute rules, e.g., as requested by such appli-
cations, in a runtime environment. Examples of suitable rules
engines, for instance, include the VISUAL PRODUCT
MODELING SYSTEM (or “VP/MS”) rules engine offered

20

30

40

45

55

6

by Computer Sciences Corporation of Falls Church, Va., the
open source DROOLS rules engine maintained by Red Hat of
Raleigh, N.C., the open source OPENRULES engine main-
tained by OpenRules, Inc. of Edison, N.J., and the WEB-
SPHERE ILOG BUSINESS RULE MANAGEMENT SYS-
TEMS offered by International Business Machines of
Armonk, N.Y.

Each of interfaces 122, 124, and 126 is a set of rules,
specifications, and/or syntax definitions that allows a system
to communicate with rules engines 116, 118, and 120, respec-
tively. For instance, an interface may be an application pro-
gramming interface (“API”), a dynamic link library (“DLL”),
or other shared library that allows communication with the
system associated with the particular interface. It should be
understood that the specific configuration, arrangement, and/
or implementation of each of the interfaces varies depending
on the underlying rules engine (or application) to which the
interface corresponds. Thus, in the presently-described
embodiments, rules execution platform 102 is configured to
communicate with a rules engine via the associated interface
regardless of the interface’s specific configuration, arrange-
ment, or implementation, as explained in more detail below.
Moreover, in those embodiments in which the rules execution
platform communicates with applications and/or rules
engines through one or more interfaces, the particular con-
figuration and implementation of a given interface may vary
and are not, in and of themselves, critical to such embodi-
ments. For example, where one or more of the rules engines
116, 118, and 120 is any of the DROOLS, OPENRULES, or
ILOG rules engines described above, the corresponding inter-
face adheres to Java Specification Request 94 (“JSR-94”)
Specification. The JSR-94 Specification, which is maintained
by the Java Community Process at http://jcp.org/en/jsr/de-
tail?1d=94, defines the manner by which any system, includ-
ing rules execution platform 102, may communicate with
rules engines that adhere to the specification. It should be
understood that rules execution platform 102 may be config-
ured to communicate with such rules engines in the manner
set forth in the JSR-94 Specification, based on the explana-
tion, definition, or standards of the interface provided with the
corresponding rules engine. Thus, rules execution platform
102 transmits requests to a rules engine in a syntax defined by
the interface associated with the engine, as explained in more
detail below, without knowledge of the interface’s arrange-
ment or implementation.

System 100 further comprises at least one shared rules
repository 128 that includes a database 130 for storing rules,
as described in more detail below. Design tool 132 is config-
ured to facilitate creation of rules, as explained below, and is
operatively connected to repository 128 to store such rules
once created. One or more databases 134 comprising data
used by one or more of applications 104, 106, and 108 may
also be operatively connected to rules execution platform 102
and design tool 132. Although database 134 is depicted as a
single structure in FIG. 1, those skilled in the art should
appreciate that database 134 may include multiple databases
that may be located and supported by separate pieces of
hardware.

System 100, and more specifically design tool 132, allows
auser to write one or more rules for execution by any of rules
engines 116, 118, and 120, where the association of the rule to
a rules engine is defined by a predetermined criteria such as
described herein. As explained in more detail below with
respectto FIG. 2, design tool 132 is configured to allow a user
to create a rule to be written in a syntax defined by the
operation of system 100, and in particular by the operation of
design tool 132 and rules execution platform 102. That is,

US 9,412,071 B2

7

system 100 defines a platform syntax that is independent of
the rules engines, so that application users need familiarize
themselves only with the platform syntax in order to create
rules that are ultimately executed by the rules engines 116,
118, or 120, and need not know the identity of the rules engine
that will ultimately execute the rules they create. At the time
a rule is created, and in presently-described embodiments
deployed, the system identifies one of rules engines 116, 118,
or 120 that will execute the rule according to the predeter-
mined criteria, for example based on rule type and/or envi-
ronment, translates the rule defined according to the platform
syntax into a format that is compatible with the identified
rules engine (as described below with respect to FIG. 2), and
stores the relationship between the rule and the rules engine in
metadata associated with the translated rule. A platform pro-
tocol thus comprises the platform syntax and the rule/rules
engine associations. When one of applications 104, 106, or
108 thereafter requires the rule to be executed in order to
generate a result, the application requests rules execution
platform 102 to execute the rule and return the result to the
requesting application in the manner described below with
respect to FIG. 3. In response, rules execution platform 102
selects the translated rule it associated with the requested rule
according to the platform protocol, executes the rule in con-
junction with the rules engine, thereby processing the request
from the application, and returns any result to the application.

System 100 may be practiced in one or more suitable
electronic devices. FIG. 6, for example, depicts an exemplary
electronic computing device 600 suitable for practicing the
embodiments described herein. Computing device 600 may
take many forms, including but not limited to one or more
computer, workstation, server, network computer, quantum
computer, optical computer, Internet appliance, mobile
device, a pager, a tablet computer, a smart sensor, application
specific processing device, etc.

The implementation of FIG. 6 is illustrative and may take
other forms. For example, an alternative implementation of
computing device 600 may have fewer components, more
components, or components that are in a configuration that
differs from the configuration of FIG. 6. The components of
FIG. 6 and/or other figures described herein may be imple-
mented in hardware based logic, software based logic, and/or
logic that is a combination of hardware and software based
logic (e.g., hybrid logic); therefore, the components of FIG. 6
and/or other figures are not limited to a specific type of logic.

In this embodiment, computing device 600 comprises a
processor 602, having one or more cores 603 and memory
604. Processor 602 may include hardware or software based
logic to execute instructions on behalf of computing device
600. In one implementation, processor 602 may include one
or more processors, such as a microprocessor. In one imple-
mentation, processor 602 may include hardware, such as a
digital signal processor (“DSP”), a field programmable gate
array (“FPGA”), a Graphics Processing Unit (“GPU”), an
application specific integrated circuit (“ASIC”), a general-
purpose processor (“GPP”), etc., on which at least one or
more components of system 100 can be executed. In another
implementation, core(s) 603 may be configured for executing
software stored in memory 604 or other programs for con-
trolling computing device 600.

Computing device 600 may include one or more tangible
nontransitory computer-readable storage media for storing
one or more computer-executable instructions or software for
implementing exemplary embodiments. For example,
memory 604 included in association with computing device
600 may store computer-executable instructions or software,
e.g., instructions for implementing and processing every

10

15

20

25

30

35

40

45

50

55

60

65

8

module of a programming environment. Memory 604 may
include a computer system memory or random access
memory (“RAM?”), such as dynamic RAM (“DRAM?”), static
RAM (“SRAM”), extended data out RAM (“EDO RAM”),
etc. Memory 604 may include other types of memory as well,
or combinations thereof.

In one implementation, processor 602 may include a vir-
tual machine (“VM”) 605 for executing the instructions
loaded in memory 604. Virtual machine 605 can be provided
to handle a process running on multiple processors so that the
process appears to be using only one computing resource
rather than multiple. It should be understood that VM 605
may be configured to span across multiple electronic devices
similar to computing device 600. Virtualization can be
employed in computing device 600 so that infrastructure and
resources in the computing device can be shared dynamically.
Multiple VMs 605 may be resident on processor 602.

Computing device 600 may also include a hardware accel-
erator 606, such as implemented in an ASIC, FPGA, or the
like, in order to speed up the general processing rate of the
computing device.

Additionally, computing device 600 may include a net-
work interface 608 to interface to a local area network
(“LAN”) or a wide area network (“WAN”), such as the Inter-
net, through a variety of connections including, but not lim-
ited to, standard telephone lines, LAN or WAN links (e.g., T1,
T3, 56 kb, X.25), broadband connections (e.g., integrated
services digital network (“ISDN™)), frame relay, asynchro-
nous transfer mode (“ATM”), wireless connections (e.g.,
802.11), high-speed interconnects (e.g., InfiniBand, gigabit
Ethernet, Myrinet), or any combination of the above. Net-
work interface 608 may include a built-in network adapter,
network interface card, personal computer memory card
international association (“PCMCIA”) network card, card
bus network adapter, wireless network adapter, universal
serial bus (“USB”) network adapter, modem, or any other
device suitable for interfacing computing device 600 to any
type of network capable of communication and performing
the operations described herein.

Computing device 600 may include one or more input/
output (“I/0”) devices 610 such as a keyboard, a multi-point
touch interface, a pointing device, for example a mouse, or
any combination thereof for receiving input from a user.
Computing device 600 may include other suitable /O periph-
erals as should be understood by those skilled in the art.

Computing device 600 may also comprise one or more
visual display devices 614 operatively connected to input
devices 610. A graphical user interface (“GUI”) 616 may be
shown on display device (s) 614 in order to present the GUI to
a user.

A storage device 618 may also be associated with comput-
ing device 600. Storage device 618 may be, for example, a
hard-drive, CD-ROM or DVD, zip drive, tape drive, or other
suitable tangible computer readable storage medium capable
of storing information, including any storage device acces-
sible by computing device 600 via network interface 608.
Storage device 618 may be useful for storing application
software programs 620, rules execution platform 102, design
tool 132, shared rules repository 128, database 134, and an
operating system (“OS”) 626. It should be understood that
storage 618 may be segmented across multiple storage
devices so that, for example, each of applications 620 may
reside on separate storage devices. It should be understood
that, in at least one embodiment, applications 620 includes
rules execution platform 102 and design tool 132 and may

US 9,412,071 B2

9

include the other applications described above, such as appli-
cations 104, 106, and 108 and rules engines 116, 118, and
120.

As explained above, shared rules repository 128 includes
one or more databases, such as database 130. Storage device
618 may also include other data stored in one or more data-
bases or other data structures, such as database 134. The
databases may be managed by database software, such as (but
not limited to) Oracle Database, IBM DB2, mySQL server,
and Microsoft SQL Server.

OS 626 may be any suitable operating system, such as any
of the versions of the Microsoft WINDOWS operating sys-
tems, the different releases of the Unix and Linux operating
systems using the Linux kernel, any version of the MACOS
for computing devices provided by Apple Inc. of Cupertino,
Calif., any embedded operating system, any real-time oper-
ating system, any open source operating system, any propri-
etary operating system, any operating systems for mobile
electronic devices, or any other operating system capable of
being executed by computing device 600 and performing the
operations described herein. The operating system may be
running in native mode or emulated mode.

Exemplary embodiments may be provided as one or more
electronic-device readable programs embodied on or in one
or more mediums, such as a non-transitory electronic device-
readable storage medium. The mediums may be, but are not
limited, to a hard disk, a compact disc, a digital versatile disc,
a flash memory card, read only memory (“ROM”), program-
mable ROM (“PROM”), random access memory (“RAM”),
magnetoresistive RAM (“MRAM”), or a magnetic tape.

In general, the electronic-device readable programs may be
implemented in any programming language. Some examples
of languages that may be used include Python, C, C++, C#,
Java, JavaScript, a hardware description language (HDL),
UML, PLC, etc. It should be understood that different com-
ponents of system 100 may be implemented in different and/
or multiple programming languages. For instance, each of
rules engines 116, 118, and 120 may be programmed in a
different programming language, each of which may be dif-
ferent from the program language in which design tool 132 is
written. Further, the computer readable programs may be
implemented in a hardware description language or any other
language that allows prescribing computation. The software
programs may be stored on or in one or more mediums as
object code. Instructions in the programming languages may
be executed by one or more processors to implement the
computer readable programs described in the programming
languages, or alternatively the instructions may be imple-
mented directly by hardware components other than a pro-
Cessor.

FIG. 7 illustrates an exemplary distributed implementation
suitable for use with the exemplary embodiments described
herein. A system 700 may include computing device 600, a
network 712, a service provider 713, a target environment
714, and a cluster 715, although it should thus be understood
that other embodiments may include more devices, fewer
devices, or devices in arrangements that differ from the
arrangement of FIG. 7 without departing from the scope of
the present invention.

As should be understood, network 712 transports data from
a source to a destination. Embodiments of network 712 may
use network devices, such as routers, switches, firewalls,
and/or servers and connections (e.g., links) to transport data.
Network 712 may be a hardwired network using wired con-
ductors and/or optical fibers and/or may be a wireless network
using free-space optical, radio frequency (“RF”), and/or
acoustic transmission paths. In one implementation, network

10

25

35

40

45

50

10

712 may be a substantially open public network, such as the
Internet. In another implementation, the network 712 may be
a more restricted network, such as a corporate virtual net-
work. Network 712 may thus include LANs, WANs, Metro-
politan Area Network (“MAN”), wireless networks (e.g.,
using IEEE 802.11, Bluetooth, etc.), etc., or any combination
thereof. Network 712 may use middleware, such as Common
Object Request Broker Architecture (“CORBA”) or Distrib-
uted Component Object Model (“DCOM”). Implementations
of networks and/or devices operating on networks described
herein are not limited to any particular data type, protocol,
architecture/configuration, etc.

Service provider 713 may include a device that makes a
service available to another device. For example, the service
provider 713 may include an entity (e.g., an individual, a
corporation, an educational institution, a government agency,
etc.) that provides one or more services to a destination using
a server and/or other devices. Services may include instruc-
tions that are executed by a destination to perform an opera-
tion (e.g., an optimization operation). Alternatively, a service
may include instructions that are executed on behalf of a
destination to perform an operation on the destination’s
behalf. In one embodiment, for example, each of rules
engines 116, 118, and 120, along with the engine’s respective
interface 122, 124, or 126, may be configured as a service
provider 713. In such an configuration, and referring again to
FIG. 6, such rules engines would be located remotely from
rules execution platform 102, design tool 132, and repository
128 but communicate with those programs via network 712 in
the same manner as otherwise described herein. Similarly,
target environment 714 may include a device that receives,
stores, and transmits information over network 712. In one
embodiment, for example, target environment 714 may com-
prise repository 128 and/or database 134.

Cluster 715 may include a number of units of execution
(“UEs”) 716 and may perform processing on behalf of com-
puting device 600, and/or another component, such as service
provider 713 and/or target environment 714. For example, in
one embodiment, cluster 715 may perform parallel process-
ing on an operation received from computing device 600.
Cluster 715 may include UEs 716 that reside on a single
device or chip or that reside on a number of devices or chips.

UEs 716 may include processing devices that perform
operations on behalf of a device, such as a requesting device.
In one embodiment, a UE can be a microprocessor, field
programmable gate array (“FPGA”), and/or another type of
processing device. Embodiments of UE 716 may include
code, such as code for an operating environment. For
example, a UE may run a portion of an operating environment
that pertains to parallel processing activities. In one embodi-
ment, service provider 713 may operate cluster 715 and may
provide interactive optimization capabilities to computing
device 600 on a subscription basis (e.g., via a web service).

UEs 716 provide remote/distributed processing capabili-
ties. A hardware UE may include a device (e.g., a hardware
resource) that performs and/or participates in parallel pro-
gramming activities. For example, a hardware UE may per-
form and/or participate in parallel programming activities in
response to a request and/or a task it has received (e.g.,
received directly or via a proxy). A hardware UE may perform
and/or participate in substantially any type of parallel pro-
gramming (e.g., task, data, stream processing, etc.) using one
or more devices. For example, in one implementation, a hard-
ware UE may include a single processing device that includes
multiple cores, and in another implementation, the hardware
UE may include a number of processors. A hardware UE may
also be a programmable device, such as an FPGA, an ASIC, a

US 9,412,071 B2

11

DSP, etc. Devices used in a hardware UE may be arranged in
substantially any configuration (or topology), such as a grid,
ring, star, etc. A hardware UE may support one or more
threads (or processes) when performing processing opera-
tions.

A software UE may include a software resource (e.g., a
technical computing environment, a worker, a lab, etc.) that
performs and/or participates in parallel programming activi-
ties. For example, a software UE may perform and/or partici-
pate in parallel programming activities in response to a
receipt of a program and/or one or more portions of the
program. A software UE may perform and/or participate in
substantially any type of parallel programming using one or
more hardware UEs. Embodiments of a software UE may
support one or more threads and/or processes when perform-
ing processing operations.

The term ‘parallel programming’ may be understood to
include multiple types of parallel programming, e.g., task
parallel programming, data parallel programming, and
stream parallel programming. Parallel programming may
include any type of processing that can be distributed across
two or more resources (e.g., software UEs, hardware UEs,
processors, microprocessors, clusters, labs, etc.) and be per-
formed at substantially the same time.

For example, in one implementation, parallel program-
ming may refer to task parallel programming where a number
of tasks are processed at substantially the same time on a
number of software UEs. In task parallel programming, each
task may be processed independently of other tasks executing
atthe same time (e.g., a first software UE executing a first task
may not communicate with a second software UE executing
a second task).

In another implementation, parallel programming may
refer to data parallel programming, where data (e.g., a data
set) is parsed into a number of portions that are executed in
parallel using two or more software UEs. In data parallel
programming, the software UEs and/or the data portions may
communicate with each other as processing progresses.

In still another implementation, parallel programming may
refer to stream parallel programming (also referred to as
pipeline parallel programming). Stream parallel program-
ming may use a number of software UEs arranged in series
(e.g., a line) where a first software UE produces a first result
that is fed to a second software UE that produces a second
result. Stream parallel programming may also include a state
where task allocation may be expressed in a directed acyclic
graph (“DAG”) or a cyclic graph with delays).

Other implementations may combine two or more of task,
data, or stream parallel programming techniques alone or
with other types of processing techniques to form hybrid-
parallel programming techniques.

Those skilled in the art should appreciate that each of
applications 104, 106, and 108, rules engines 116, 118, and
120, rules execution platform 102, design tool 132, shared
rules repository 128, and database 134, for example, may be
provided by one or more computing devices 600, and/or
service providers 713, and/or may be included within target
environment 714, and/or may be handled by one or more UEs
716 of cluster 715. It should be further understood that each of
these components may be provided by separate computing
devices, service providers, target environments, or clusters.

Applications 104, 106, and 108 may be software applica-
tions utilized by an organization or business to perform cer-
tain functions encompassed by the entity. For instance, an
insurance company may execute an application to determine
whether to underwrite an insurance policy. An organization
may perform distinct functions or services, for example

10

15

20

25

30

35

40

45

50

55

60

65

12

underwriting, finance, billing, or production, and one or more
respective applications may be used in performing a given
such function. Each function may be considered as encom-
passing an environment, and as used herein the term refers to
the application and computer and communications systems
dedicated to the performance of such a function within an
organization, and/or the operation, designation, and/or clas-
sification thereof. Within an environment, an application may
call rules for component functions, such as determining a
proper underwriter to analyze a policy or determining pricing
schedules. The business may authorize certain employees or
contractors to operate the application. Certain of those indi-
viduals may have business knowledge such that they are able
to define business rules that will be called by the application
in its normal operation. The business may authorize those
individuals with business knowledge to operate design tool
132 to define these rules, as described herein, or may desig-
nate certain employees or contractors trained to operate and
maintain the system to define the rules through design tool
132, in conjunction with the individuals with business knowl-
edge.

The insurance company, as noted above, has an internal
computer system with a database with records identifying
each user by an identifier (e.g., social security number,
employee number, user id, or other mechanism capable of
differentiating one individual from others at the business). As
should also be understood, the company may assign, in the
company’s internal database system, users to one or more
groups related to the users’ functions within the organization
(e.g., administrator, underwriter, customer representative,
actuary, finance, accounting, human resources, or legal). The
table is constructed and updated, for example, by an admin-
istrator at the company who either understands the functions
performed by the various individuals or who has access to that
information.

Design tool 132 relies on a data hierarchy to store rules and
to provide design tool users access to rules in the database
based at least in part of a user’s role(s) defined by the orga-
nization’s system. Referring first to rules repository 128,
database 130 may be configured to store rules according to the
predetermined hierarchy. In the presently-described embodi-
ments, for example, database 130 defines the following data
levels: (a) business domain, (b) business rule domain, (c)
business rule subdomain, (d) category, and (e) subcategory.
The number of data levels, and their description and defini-
tion, can vary as desired and may be established at construc-
tion of system 100 for a given organization according to the
organization’s wishes. The business domain, for example,
may refer to a broad business category within which the
applications are operated, for example, life insurance, casu-
alty insurance, or homeowners insurance. The business rule
domain may refer to subdivisions of the business domain. For
example, if the business domain is life insurance, the business
rule domain may refer to functional divisions within the life
insurance organization, e.g., administrator, underwriter, cus-
tomer representative, actuary, finance, accounting, human
resources, or legal. The business rule subdomain, category,
and subcategory refer to further hierarchical subdivisions, as
determined by the organization. The particular data hierarchy,
and its organization, is not in and of itself critical to the
present embodiments and is provided herein for purposes of
example.

Next regarding design tool 132, FIG. 2 is a flowchart
depicting an exemplary technique for defining one or more
rules through the design tool for execution by one or more of
rules engines 116, 118, and 120 (FIG. 1). The ensuing expla-
nation of the exemplary technique depicted by FIG. 2 is made

US 9,412,071 B2

13

with reference to the components of system 100 set forth in
FIGS. 1 and 6. At step 210, the user initiates design tool 132,
which is presented to the user as GUI 616 by display device
614. This may be accomplished in a number of ways depend-
ing on the operating environment in which the design tool is
initiated and the specific implementation of the tool. For
instance, design tool 132 may be implemented as a standalone
application that the user initiates by activating an icon pre-
sented via visual display device 614. In another embodiment,
GUI 616 presents design tool 132 as a plug-in to another
application rather than a standalone application. For instance,
GUI 616 may be a plug-in to or portion of the application for
which the user wishes to define a rule. That is, in order to
create a rule for application 106, for example, the user elects
to initiate the design tool by selecting a menu item or icon
associated with the tool from within the application. In
another embodiment, GUI 616 may be a plug-in to another
application. For example, the plug-in may be for the
MICROSOFT MANAGEMENT CONSOLE or INTERNET
EXPLORER applications that accompany the WINDOWS
operating system offered by the Microsoft Corporation of
Redmond, Wash.

Once design tool 132 is activated, a security module com-
ponent of design tool 132 identifies the user that initiated the
tool. This may be accomplished in a number of ways depend-
ing on the manner by which the user activated the design tool.
For instance, where design tool 132 is implemented as a
plug-in to the application, the design tool has access to the
user’s credentials that were identified when the user activated
the application. In contrast, if the user activates design tool
132 as a standalone application, the design tool may identity
a user id associated with the user via the operating system of
the computing device upon which the design tool has been
initiated by the user, as should be understood.

Having identified the user, the design tool security module
queries the user organization computer database system for
data identifying functional groups to which the user is
assigned, such as administrator, underwriter, customer repre-
sentative, actuary, finance, accounting, human resources, or
legal. Alternatively, the user’s organization system may be
configured to pass this information to the design tool upon the
design tool’s activation by the user. In one embodiment, data-
base 134 maintains a table associating these predetermined
groups with respective one or more data levels in the data
hierarchy. Thus, in this example, each of the groups is asso-
ciated with a corresponding business rule domain. If, for
example, the design tool receives data indicating the user is
associated with one of these groups, then the data defines the
business domain and the business rule domain for that user.
Later, when the user executes a process to create a rule and is
presented with a user interface screen associated with a given
selected rule type, the user interface displays selectable data
entry blocks in which the user selects the data levels with
which the user wishes to store the new rule in the database.
Given that the user’s group data identified both the business
domain and business rule domain levels, the design tool auto-
matically populates those fields, and the user need only manu-
ally populate the remaining three fields. On the other hand,
assume the group data identifies multiple groups, each asso-
ciated with a respective different business rule domain in the
table of database 134. In that event, the group data defines the
business domain but not the business rule domain, and the
design tool automatically populates only the business domain
block in the user interface. In the business rule domain block,
the user is given the choice only of the business rule domains
associated with the groups received in the data from the
organization system, and the user selects the remaining three

10

15

20

25

30

35

40

45

50

55

60

65

14

blocks as described above. In another embodiment, the user
may select the data levels of the data hierarchy, as described
in more detail below with respect to FIG. 14.

Having defined the data levels according to the data hier-
archy, the user defines input for the rule at step 220 and
proceeds to define one or more rules at 230, as described in
more detail below. When the user completes the rule, the
design tool stores the rule in database 130 according to the
user’s data level definitions. In the main user interface screen
corresponding to the user’s selected rule type, the user inter-
face lists all rules stored in database 130 under the same data
level path defined by the user. In another embodiment, the
user interfaces lists all rules under the data level defined by
any user. The user interface presents the previously stored
rules so that the user can select a given rule, if desired, copy
the selected rule into a workspace defined by the user inter-
face, modify the copied rule, and store the modified rule as a
new rule.

The design tool also checks database 134 to determine the
system role(s) with which the identified user is assigned. As
described above, at the time of construction of system 100 for
the organization, the organization defines a plurality of roles.
For purposes of example only, the presently-described
embodiments define the following system roles: rule builder,
rule designer, and technical administrator. At construction or
in later modifications by an administrator at the organization,
the organization defines permissions associated with each
role. For example, the rule builder may be permitted to create
rules, for example according to the procedure discussed
below, but not to deploy rules, i.e., activate rules so that the
rules are available to rules execution platform 102 for execu-
tion in response to requests from applications. In contrast, the
rule designer permissions may allow the rule designer to both
build rules and deploy them. Permissions associated with the
technical administrator may allow that individual to perform
only administrative tasks, or may allow the administrator to
build and deploy rules in addition to the administrative tasks.
The particular permissions associated with a given system
role can vary and are generally within the discretion of the
organization at the time of construction. Moreover, the orga-
nization may define more or fewer than three system roles.

The permissions associated in database 134 with each
functional role may allow a user associated with the role to
access one or more rules editors, each of which provides an
interface through which the user may access or define rules by
selecting options associated with the rules editor. Thus, each
rules editor may be considered to correspond to a rule type,
and the association of one or more rule editors with a func-
tional role thereby associates the role with one or more rule
types, for example decision, parameter, process, or transfor-
mation. By defining these permissions at construction, the
organization can define the rule-building options desired to be
available, and by exclusion unavailable, and therefore which
one or more ruletypes, if any, are associated with each respec-
tive role. The organization can change these associations on
anongoing basis through an administrator who accesses data-
base 134.

When the design tool security module identifies the user
who is activating the design tool, the design tool checks
database 134 and identifies the system and functional roles
with which the user is associated. If the functional role is
associated with more than one rule type, or rule editor, the
design tool prompts the user to select one of the rule editors
for the user’s functional role and receives the user’s selection,
for example through a user interface. Given the user’s selec-
tion, or if the user’s functional role is associated with only
one, the design tool presents the user with a rule editor user

US 9,412,071 B2

15

interface screen through which the user can define rules of the
selected (or only) rule type and/or perform other functions
(e.g., modify, test, and/or deploy rules, as defined by the
permissions associated with the user’s system role in data-
base 134). FIG. 17 illustrates an exemplary screen presented
to the user depending on the permissions associated with the
user’s system and functional roles. If the user’s functional
role is not associated with any rule type, the design tool user
interface presents a similar screen, but without an option to
define rules.

Note in FIGS. 8, 9, and 17 that screen 800 provides data
entry blocks 802 and 804 for entry of the data elements
according to the predetermined data hierarchy. As discussed
above, the design tool may automatically populate one or
more of the blocks depending on user-specific data received
from the user’s organization system. Also as discussed above,
the screen displays those rules stored in database 130 under
the data elements defined by the user in the blocks.

Because each rules editor relates to a given rule type, and
therefore defines different functions between different inputs
and outputs, in the presently-described embodiment, design
tool 132 presents the user with a respective version or view of
GUI 616 based on the rule editor/type for which the user will
be defining rules. Depending on the rules editor, design tool
132 presents a version of GUI 616 that presents to the user
only the options (i.e., selectable functions, including data
operations) related to the selected rule type and for which the
user will be defining rules. For instance, if there are portions
of'design tool 132 that are not applicable to the editor, they are
removed or hidden from the GUI presented to this user.

Assume, for example, that a user accesses design tool 132,
that the design tool’s security module identifies the user, the
user’s system and functional roles, and a plurality of rule
editors associated with the user’s functional role(s), in data-
base 134, and that the user selects the “decision” rule editor.
Design tool 132 then presents an initial user interface screen
800 associated with the design type rule, presented as GUI
616 as shown in FIG. 8.

Screen 800 includes a rule explorer tab 802 and a data tab
804. Rule explorer tab 802 comprises the entire business
domains and rule sets, in a tree view format, if any have
previously been defined for the user. The user selects tab 802
to initiate creation and/or maintenance of rules. Design tool
132 populates tabs 802 and 804 with information necessary to
define rules of a type associated with the editor. Design tool
132 populates data tab 804 using information contained in
data dictionaries available to the design tool as described in
more detail below. For example, a master data dictionary is
created before design tool is initiated at step 210 and is loaded
by the design tool into data tab 804 when the design tool is
initiated. The master data dictionary, in this example, takes
the form of an extensible markup language (“XML”) schema
that defines the data elements of database 134 that the user
may incorporate into a rule. For example, the XML schema
identifies the columns within the tables of a database which
may be used as input to the rule being defined or which may
be identified as the data upon which the rule performs some
function.

Design tool 132 causes two types of data dictionaries to be
available within data tab 804. The first is the master data
dictionary and is depicted on data tab 804 by an icon 806
labeled “DD.” This data dictionary contains data items that
are imported or manually added at the business domain level.
As explained below, the user imports data elements and then
selects specific data elements included within the master data
dictionary that may be associated with the rule.

10

15

20

25

30

35

40

45

50

55

60

65

16

The second data dictionary is the business rule domain
(“BRD”) data dictionary and is identified by an icon 808
labeled “BRD” on data tab 804. The BRD data dictionary is
built from, and is therefore a subset of, the master data dic-
tionary. While the master data dictionary contains all data that
is available at the business domain level, the BRD data dic-
tionary includes data the administrator believes is applicable
to and will subsequently be used by the user to define rules for
the business rule domain.

The master data dictionary is all data available for a busi-
ness domain to be used by any of its business rule domains.
Referring additionally to FIG. 9, in order to include the data
elements defined by the master data dictionary in data tab
804, the user right clicks anywhere in the data tab. As a result,
design tool 132 presents the user with a menu option 900 to
create a group. Menu option 900 allows for different data
groups to be defined in data tab 804. A group is a logical
collection of data that comprises subsets of the data defined
by the master data dictionary that the user may include in the
definition of a rule. As explained in more detail below, the
data groups also identify whether data comes from a schema
or is manually added by the user. Adding data manually is
accomplished via a different menu option as explained below.

When the user invokes create group menu option 900,
design tool 132 presents the user with a create group screen
1000 with an entry field 1002 that will allow the user to
provide a name 1004 of the data group being adding, as
illustrated in FI1G. 10. After the user provides name 1004 via
entry field 1002, the user can either activate a next button
1006 or a finish button 1008. Activating next button 1006
navigates the user to an import data screen 1100 (FIG. 11).
Alternatively, activating finish button 1008 saves and adds the
data group to data tab 804 and closes screen 1000. In order to
complete the import process at a later time after selecting
finish button 1008, the user right clicks the data group now
located in data tab 804 and selects a menu option labeled
“Import.” As a result, design tool 132 displays import data
screen 1100 (FIG. 11).

Referring to FIG. 11, import data screen 1100 allows the
user to define a path 1102 for importing data dictionary
schema. Path 1102 can either be entered manually into an
entry field 1104 or may be facilitated by the operating system,
as should be understood, by selecting a browse button 1106 to
locate the path.

After the user provides path 1102 to screen 1100 using
entry field 1104, the user may invoke one of a back button
1108, a next button 1110, and a finish button 1112. Activating
finish button 1112 causes design tool 132 to import the data
contained in the schema and make it available in data tab 804.
If the user decides to delay in finishing defining the master
data dictionary, the user may follow the steps described above
in order to complete the import of the master data dictionary.

Activating back button 1108 in screen 1100 or a similar
back button in any other screens described herein causes
design tool 132 to save in memory any data or other informa-
tion provided by the user to the respective screen. If the user
previously invoked finish button 1112 or a similar finish but-
ton on a previous screen, however, design tool 132 does not
save any data provided on the current screen, such as screen
1110. In that circumstance, design tool 132 only saves any
data provided if finish button 1112 is invoked on screen 1100
or any subsequent screens.

Invoking next button 1110 retrieves an amount of informa-
tion from memory sufficient to allow the user to select a
subset of available data to import into the data dictionary
being defined. FIG. 12 illustrates a screen 1200 presented by
design tool 132 which displays the available information to

US 9,412,071 B2

17
the user that has been loaded from the XML database schema.
A selection box 1202 and action buttons 1204 allows the user
to select all or a subset of the schema data. This eliminates
unnecessary data objects from being included into the master
data dictionary. Screen 1200 also includes a selected box
1206, which identifies the schema data that the user has
selected from the loaded database schema. The items the user
selects from selection box 1202 and transfers to selected box
1206 via action buttons 1204 become part of the data dictio-
nary that is defined by the user.

In the current example, the user defines the master data
dictionary by selecting the desired data elements from data-
base 134 in the manner described above. In this scenario,
attributes of the data elements selected by the user to be
included in the master data dictionary are unavailable. The
selection of specific attributes, such as XML tags for the data
dictionary, is available to the user for selection when the user
defines the BRD data dictionary, as explained below.

After the user selects the desired data objects to be included
in the master data dictionary, the user invokes a finish button
1208. As aresult, screen 1200 closes, the selected data objects
are incorporated into the master data dictionary, and design
tool 132 returns the user to screen 800 as illustrated in FIG.
13. As shown in this illustration, design tool 132 loaded the
data objects selected by the user as described above into data
tab 804.

It should be understood that the data displayed in data tab
804 is organized as a hierarchical tree structure, such that
activating each level by activating the plus symbol expands
that level to display the level(s) below. Likewise, rule tab 802
is configured to display a tree structure of the business
domains associated with the user. The tree structure is a
hierarchical manner to define and compartmentalize the rules
created by the users. In the presently-described embodiment,
the tree structure comprises at least three levels: business
domain, business rule domain, and business rule sub domain,
as explained above. It should be understood that the levels are
a hierarchical manner to define and compartmentalize the
rules created by users and that the hierarchy may include any
number of desired levels.

To define a rule, the user right clicks in rule tab 802 and
selects a “define rule” menu option that appears as a result.
Referring to FIG. 14, design tool 132 presents a screen 1400
to the user after activation of the “define rule” menu option.
Screen 1400 presents selection dropdown boxes 1402, 1404,
and 1406 that allow the user to select the business domain, the
business rule domain, and the business rule sub domain,
respectively. Activating a finish button 1408 causes design
tool 132 to save the domains selected by the user via selection
dropdown boxes 1402, 1404, and 1406.

Design tool 132 requires the user to define the BRD data
dictionary prior to defining any rules associated with the
selected business rule sub domain. Referring again to FIG.
13, the user selects BRD icon 808 from data tab 804. If the
BRD data dictionary has not previously been defined, the user
right clicks in data tab 804 and selects a “new/update BRD
data dictionary” menu option. As a result, design tool 132
presents a screen 1500 to the user as illustrated in FIG. 15.

Referring to FIG. 15, screen 1500 allows the user to define
the BRD data dictionary. The user then selects data elements
from the BRD data dictionary to include in the rules created
by the user as input and/or output, as explained in more detail
below. When the user established the master data dictionary
as explained above, the user was only able to select schema
objects and not specific XML elements. When the user

10

15

20

25

30

35

40

45

50

55

60

65

18

defines the BRD data dictionary, however, entire objects do
not have to be added and the user may select single data
elements.

Screen 1500 comprises two selection tables: master data
dictionary selection table 1502 and BRD data dictionary
selection table 1504. Screen 1500 also comprises action but-
tons 1506 configured to allow the user to select elements from
the master data dictionary to be included into the BRD data
dictionary, as should be understood.

Should the user desire to also include variables in the rule
to be defined that are not in the data dictionaries, the user
selects a next button 1502 and is presented with a screen 1600
(FIG. 16). Otherwise, when the user is finished selecting the
data elements from the master data dictionary to be included
in the BRD data dictionary, the user invokes a finish button
1502.

Referring to FIG. 16, if the user desires to define additional
variables, design tool 132 presents screen 1600. The user
enters the name of a desired variable in an entry field 1602 and
invokes an add button 1604. As a result, design tool 132 adds
the variable to a variable selection area 1606 and clears entry
field 1602. The user is thus able to define as many additional
variables for the rule as desired. Invoking a finish button 1606
returns the user to screen 800 (FIG. 17). The BRD data
dictionary includes an “other” area that comprises any and all
variables defined by the user via screen 1600.

Referring back to FIG. 2, once the user has defined the
BRD data dictionary, the user defines the input for the rule
using the BRD data dictionary at step 220. Although the user
may select the output for the rule from the BRD data dictio-
nary, as well, it may also be manually defined. FIG. 17 illus-
trates screen 800 where design tool 132 has loaded the BRD
data dictionary into data tab 804. Data area 1700 of screen 800
comprises two horizontal tabs 1702 and 1704 (triggered by
button 808) within a data area 1700 identified with an input
label 1706 and an output label 1708, respectively. The data
elements located in data tab 1702 are the inputs for the rule
created by the user. In order to add data elements to input tab
1702, the user selects and drags a data element from the BRD
data dictionary in data tab 804 to an input area 1710 associ-
ated with input tab 1702. In this embodiment, the layout of the
input information contained in the input area 1710 mimics the
layout of the corresponding data elements as arranged in the
BRD data dictionary tree view in data tab 804. For instance,
when the user places a specific data element in input area
1710, the hierarchical arrangement of the data element shown
inthe BRD data dictionary of data tab 804 is carried over with
the data element to the input area.

When output tab 1708 is selected, input areca 1710 is
replaced by an output area. Output data for the rule can come
from the BRD data dictionary or may be manually created by
the user. The steps performed when adding data items from
the BRD data dictionary to the output area are the same as
explained above for defining the input data. The user can also
define custom output for the rule by selecting anywhere in the
output area, right clicking, and selecting a menu entitled
“define output™ that appears as a result. Selecting the “define
output” menu option causes design tool 132 to present a
screen to the user that allows the user to define an output
similar to screen 1600 (FIG. 16). The screen includes “Can-
cel” and “OK” pushbuttons at the bottom of the screen. At the
top of the screen is a table for displaying the output items
associated with the rule, which is initially empty when the
view is opened. There is a “Delete” pushbutton below the
table and associated therewith in order to remove any
unwanted output items appearing in the table. At the bottom
of'the screen is an “Output” entry field that allows the user to

US 9,412,071 B2

19

enter the output data item to be added to the rule. The “Add”
pushbutton to the right of the entry field allows the user to add
the data item in the entry field to the output table. The user is
able to add the necessary output data items by repeating the
above process for each output data item. When the user has
added the desired output data items, the user invokes the
“OK” pushbutton. As a result, the design tool 132 closes the
screen and adds the output data items defined using the screen
to the output area associated with output tab 1704. Double
clicking on any data item within the output field of screen 800
initiates a data item editor that allows the user to define the
data type for each manually defined output item.

For purposes of the following explanation, “functions” are
common routines that may be included in a rule to perform an
action. While it should be understood that there are multiple
functions that may be incorporated into a rule, the ensuing
explanation describes adding a single function to a rule,
where the function is a conditional statement. It should be
understood that adding other functions to a rule is performed
in a manner similar to that described below. Thus, it should be
understood that the process described above allows a user to
define the input and output data for a rule. The following
description explains how to create a rule by incorporating
functions into the rule at step 230 (FIG. 2).

In order to add a function to a rule, the user right clicks on
any level ofa hierarchy 1712 ofthe rule in a rule area 1714. As
a result, design tool 132 causes a “New” menu option to
appear. [fthe user selects the “New” menu option, design tool
132 causes a tear off menu (i.e., a secondary menu) to appear
presenting the user with the option to create a conditional
statement. It should be understood that the tear off menu may
be configured to present additional options to the user corre-
sponding to each additional function that may be included in
the rule.

Activating the menu corresponding to the conditional
statement causes design tool 132 to present a condition editor
in a rules definition area 1716. FIG. 18 illustrates a condition
editor 1800 presented by design tool 132 within rule defini-
tion area 1716 (FIG. 17). Condition editor 1800 comprises a
first field 1802 where the user may provide a name for the
conditional statement. The name provided to first field 1802 is
listed in a rule wizard area 1804 with all the other pieces of a
rule 1806. Rule definition area 1716 is segmented into three
section to represent an if 1808, a then 1810, and an else 1812
construct. Although the rule may use both then 1810 and else
1812 areas, it should be understood that the rule may be
configured to only use then 1810 area. In those situations the
user opts not to populate else area 1812.

Design tool 132 provides the user with the ability to select
any necessary items for the conditional statement within if
area 1808, including attributes, expressions, and input.
Design tool 132 initially presents GUI to the user with two
sets of “if” fields 1814 and 1816. If the user requires additional
input fields, the user may invoke an add button 1818. If so,
design tool 132 adds another set of input fields below the last
set 1816. Design tool 132 also provides the ability to define
multiple data items as an ‘and’ and/or ‘or’ situation by acti-
vating ellipse buttons 1824 and 1826 and selecting the desired
modifier.

The user defines the if portion of the conditional statement
using first input field 1814. The user adds data items to the
input fields by dragging and dropping them into the input
fields from input area 1710 (FIG. 17). Design tool 132
dynamically changes a second field 1820 from an entry field
to a dropdown selection box if the data item dragged and
dropped over first field 1814 is associated with predefined
values. In this example, for instance, the “disposition first

10

15

20

25

30

35

40

45

50

55

60

65

20

level of approval” data element is associated with at least a
value of “approved,” thereby causing second field 1820 to
change to a dropdown selection box with the values associ-
ated with the data element. Otherwise, second field 1820
provides the user with the ability to manually enter a value or
an expression in the second field as illustrated by a third field
1822. Expressions may be used in situations where the user
desires the output of the rule to be generated when values of
data elements or variables are ‘greater than,” ‘less than,” etc.
(i.e., “>75,000” is an expression). The user may begin to
provide the expression via fields 1820 and 1822. As a result,
design tool 132 presents a dropdown list with content assist to
help guide the user in adding the expression. Once the expres-
sion needed has been located in the list, the user can simply
select the expression or continue typing. Selecting the desired
expression inserts the expression in syntax form into the
selected entry field. An example of one of the content assist
items in the dropdown selection box might be “>= Is greater
than or equal to X.” If the content assist item in this example
is selected, “>=X"is inserted into the second field. Selecting
an expression involving a range, such as “is greater than X but
less than Y,” causes the second field to be updated with “X . .
.Y” where both X and Y are editable.

Each of then section 1810 and else section 1812 includes
respective dropdown boxes 1828 and 1830. Dropdown boxes
1828 and 1830 include any functions available to the user to
add to the rule. In this example, the functions selected via
dropdown boxes 1828 and 1830 would be executed depend-
ing on the outcome of the condition defined in if section 1808.
It should be understood that the functions available for selec-
tion using dropdown selection boxes 1828 and 1830 have
been previously defined. Based on the selection of dropdown
selection boxes 1828 and 1830, design tool 132 dynamically
changes fields 1832 and 1834, respectively. If the user selects
“Expression” from either dropdown selection boxes 1828 or
1830, design tool 132 causes two additional input fields to
appear. The user drags an output item from the output area
described above with respect to FIG. 17 to the first field. The
user enters an appropriate value for the output in the second
field.

When the user completes the process of defining the con-
dition statement, the user invokes an “Update” pushbutton,
which causes design tool 132 to insert the condition state-
ment, in memory, at the bottom of the node of tree 1806
originally selected within rule wizard portion 1804.

In the present example, the user has selected then portion
1828 and else portion 1830 to each be another condition
statement, thereby creating a nested condition statement.
Selecting “condition statement” from dropdown selection
box 1828, for example, causes design tool 132 to present a
second condition editor, similar to condition editor 1800. The
user defines a second condition statement in a manner similar
to that described above. This may include defining additional
nested condition statements from the second condition state-
ment editor. When the user saves and closes the second con-
dition editor, design tool 132 saves the second condition
statement to memory, places its name at the appropriate loca-
tion in tree 1806, and adds a hyperlink 1832 adjacent to
dropdown selection box 1828 that includes the name of the
second condition statement.

At step 250, design tool 132 stores the rule created by the
user via the design tool as metadata and, in one embodiment,
as XML metadata. For example, design tool 132 stores the
exemplary rule defined by the user via the design tool as
described above and illustrated as the XML metadata shown
in FIGS. 19A, 19B, and 19C. An example of such an XML

US 9,412,071 B2

21

metadata file for another exemplary rule defined by a user via
design tool 132 is attached hereto as Appendix A.

At step 250, design tool 132 translates the rule as stored in
metadata into a syntax corresponding to the predetermined
rules engine associated with the rule. That is, design tool 132
translates the metadata into a rules engine syntax understood
by the interface associated with the predefined rules engine so
that the translated rule is executable by the rules engine. In
one embodiment, this is accomplished using an XML map-
per/translation engine as explained in more detail below with
respectto FIG. 5. The translation engine may utilize a mapper
definition set or “metamodel” in order to translate the rule as
stored by the design tool in metadata. An example of such a
metamodel for use in translating rules to be used with the
VP/MS rules engine is attached hereto at Appendix B. Appen-
dix C sets forth an exemplary translated rule created when the
exemplary rule defined in the XML metadata file attached as
Appendix A is translated by the translation engine according
to the metamodel attached as Appendix B. Atstep 260, design
tool 132 stores the translated rule in shared rules repository
128.

Selection of a rules engine to associate with the rule occurs
prior to translation, at step 240. In one embodiment, the rule
is associated with a rules engine based on the type of the rule
the user is permitted to define as described above. In another
embodiment, this occurs when a user identifies an environ-
ment with which to associate the rule. A user with appropriate
permissions may be presented with a “display” option in a
graphical user interface screen to select an environment. Acti-
vation of this option presents the user with a list of predefined
environments, which represent functions associated within
the organization and that the organization defines at construc-
tion or thereafter through an administrative process. It should
beunderstood that the environment may alternatively be iden-
tified by design tool 132 upon the tool’s initiation by an
application from within a specific environment and then
stored by the tool for use during translation of the rule as
described below. In one embodiment, the organization asso-
ciates each of these environments or functions with a type of
rule. Each rule type is associated with a rules engine in data-
base 134, such as rules engine 116, 118, or 120. Thus, when
the user selects a rule in the user interface, and an environ-
ment has been identified (either by the user or automatically
by the design tool, depending on the embodiment), at step
240, a translation engine (a computer program comprising
part of system 100) translates the rules into the syntax for the
identified rules engine at step 250, as described below with
respect to FIG. 5.

The translation engine stores the translated rule and the
identification of the rules engine selected at step 240 to
execute the translated rule in the XML metadata. For
instance, if the translation engine identified rules engine 116
as the rules engines tasked with executing the rule, the trans-
lation engine stores an identification of rules engine 116 in the
metadata. The design tool also stores in the metadata the
identifier for the rule that applications will use to request that
the rules execution platform execute the rule.

The above described steps may be performed in various
orders, and need not necessarily occur together. For example,
a user may define a rule, which may be stored for later asso-
ciation with a rules engine and translation into the format
compatible with the associated rules engine.

FIG. 3 is a flowchart illustrating an exemplary manner of
processing a request to execute a rule received by rules execu-
tion platform 102 (FIG. 1) from an application, such as appli-
cations 104, 106, and 108. The ensuing explanation of the
process illustrated in FIG. 3 is made with reference to the

20

35

40

45

50

22

components of system 100 illustrated in FIG. 1. At step 300,
system 100 initiates rules execution platform 102, which in a
preferred embodiment is accomplished automatically when
the computing device upon which rules execution platform
102 is installed initiates, as should be understood by those
skilled in the art. At step 310, an application, such as appli-
cation 104, 106, or 108, sends a request to execute a rule to
rules execution platform 102. The rule is one defined by a user
via design tool 132 in the manner described above with
respect to FIG. 2. The request to execute the rule includes an
identification of the rule along with any input or an identifi-
cation of the input required by the rule. In one embodiment,
the identification of the rule comprises the name of the rule,
while, in another embodiment, it comprises an id associated
with the rule that design tool 132 stores in the metadata for the
rule when the user creates the rule. For example, design tool
132 may assign sequential numbers to rules as id’s as the rules
are created. It should be understood, however, that the mecha-
nism to correlate a rule to a rules engine in the metadata can
vary and is not in and of itself critical to the presently-de-
scribed embodiments, and the particular mechanisms
described herein are provided for purposes of example only.

Based on the identifier, rules execution platform 102
retrieves the metadata associated with the stored translated
rule at step 320 and identifies the rules engine associated with
the rule at step 330. At step 340, rules execution platform 102
transmits the translated rule to the rules engine identified at
step 330. Rules execution platform 102 also transmits any
inputs for the translated rule that were received from the
application at step 310 to the rules engine identified at step
330. For example, if rules execution platform 102 determines
that rules engine 118 is associated with the rule, then the rules
execution platform transmits the rule and any inputs to rules
engine 118 via interface 124.

At step 360, the rules engine receiving the translated rule
executes the rule. The rules engine uses any inputs that rules
execution platform 102 transmitted to the rules engine in
order to execute the rule. Likewise, the rules engine uses any
data elements of database 134 as called for by the translated
rule. For instance, the translated rule may identify data ele-
ments of database 134 as additional inputs to the rule or to be
altered as outputs of the rule. It should be understood that the
identification of the data elements are stored in the rule’s
metadata by design tool 132 when the rule is created and in
the translated rule’s metadata when the rule is translated. The
rules engine retrieves any necessary data from database 134
identified by the rule’s metadata as necessary forits execution
of the rule.

It should be understood that when the rules engine executes
the rule, the engine may generate one or more outputs. As
explained above with respect to step 230 (FIG. 2), the user
may define any output for the rule using design tool 132. At
step 370, the rules engine transmits any output generated by
its execution of the rule to rules execution platform 102. Rules
execution platform 102 may format any output into a format
requested by the application that requested the rule be
executed. At step 380, rules execution platform 102 transmits
the output to the application that requested execution of the
rule.

As explained above with respect to step 240 (FIG. 2), the
translation engine associates a rule defined by a user with a
rules engine based on the environment selected by the user or
identified by design tool 132 during the process of defining
the rule. In another embodiment, the translation engine asso-
ciates the rule with a rules engine based on the type of the rule.
It should be appreciated, however, that other factors may be
used to determine which rules engine is associated with a rule

US 9,412,071 B2

23

defined by a user. Referring to FIG. 4, for example, one or
more of exemplary rule characteristics 400 may be used in
order to determine such an association.

Rule characteristics 400, which may be stored in database
130 or 134, may include user profile 410, a rule type 420,
input data 430, rule output data 440, user input 450, rule
syntax 460, rule semantics 470, or a description 480 of a rule.
In addition to the user id described above, user profile 410
may include, for example, an occupation of the user, or infor-
mation that allows the occupation of the user to be derived,
among other possibilities. For example, the translation engine
or design tool 132 may associate a rules engine with any rules
that are defined by an individual user having a particular
occupation or who has access to particular areas of an appli-
cation, such as billing or document management. A table in
database 134 may relate the user occupation or access rights
to predetermined rules engines. Design tool 132 may be con-
figured to identify the user’s occupation from user profile 410
in response to the user’s id determined as described above,
and thereby associate the particular rules engine with any rule
defined by that user. User profile 410 may also identify the
rules defined by the user in the past or include information
from which the rules can be identified. In such an embodi-
ment, design tool 132 identifies the rules engine associated to
the rules previously created by the user and assigns the same
engine to any additional rules defined by the user.

The rule may be explicitly associated with a particular rules
engine based on user input 450. For example, a user may
specify that a rule is to be executed by a particular rules
engine. In one embodiment, for example, design tool 132
presents a list of available rules engines to the user. The user
selects the rules engine from the list that the user wants to
execute the rule. Design tool 132 stores the identification of
the rules engine selected by the user in the metadata for the
rule at step 250 (FIG. 2) once the rule has been created.

In another embodiment, once the rule has been created,
design tool 132 analyzes the syntax 460 and semantics 470 of
the rule to determine which rules engine should be associated
with the rule. For instance, there may be syntactical elements
of'the rule that make it more or less likely that the rule should
be associated with a particular rules engine rather than
another. For example, the use of particular operators or com-
parisons may suggest a particular rules engine should handle
the rule. Semantics 470 of the rule may also be leveraged in
such a manner.

In another embodiment, design tool 132 is configured to
allow the user to provide descriptive information about the
rule. Design tool 132 stores the descriptive information with
the rule in the metadata associated with the rule. The descrip-
tion may indicate how the rule achieves a result or provides
more information about the field of endeavor to which the rule
applies. Thus, description 480 may describe a domain, pur-
view, or intended purpose for which the new rule will be used.
For instance, the user may include a particular domain, such
as contract work, new business, or product configuration
descriptions, in the description of the rule. A user may also
specify, for example, that a particular rule is useful for case
management 481, correspondence 482, distribution 483,
compensation 484, illustrations 485, underwriting 486, prod-
uct management 487, or adjudication 488, which may be
business rule domains. Those skilled in the art should under-
stand that the above descriptions are exemplary, and other
possible descriptions may be used depending on the particu-
lar rules engines, applications, and rules involved. Design
tool 132 may also associate a particular rules engine for a rule
based on the intended purpose of the rule.

10

15

20

25

30

35

40

45

50

55

60

65

24

As explained above with reference to FIG. 1, once arule is
associated with a particular rules engine, the rule is translated
into a format compatible with the associated rules engine.
FIG. 5 depicts an exemplary process flow 500 for translating
a rule defined according to a platform syntax into a syntax
understood by the identified rules engine.

As explained above, design tool 132 provides a user with
the ability to define and create rules according to a platform
syntax. The platform syntax includes the inputs, outputs, and
functions that generate outputs from inputs, along with rela-
tionships among these elements presented by design tool 132
to the user for selection. The data dictionary provides design
tool 132 with data elements available to the user to include in
the rule. That is, as explained above, the data dictionary
identifies data elements of database 134 that the user may
include as inputs to, as outputs of, or to be used by the rule.

Referring to FIGS. 1 and 5, a rules security layer 504
determines which portions of rules data dictionary 502 are
available to a user creating a rule of a given type. That is,
based on the selected rule type, or rules editor, the design tool
may limit the user, in the process of creating rules, to certain
predetermined portions of rules data dictionary 502. Rules
data dictionary 502 was previously established in the manner
described above with respect to step 220 (FIG. 2).

Once the user has defined a rule according to the platform
syntax, the result is the metadata for the rule described above
with respect to step 250 (FI1G. 2) referred to as an intermediate
contract 506. Intermediate contract 506 comprises all the
pieces of the rule defined by the user, including the functions,
input data, and output data, using design tool 132. As
explained above, the rules engine that will execute the rule is
selected based upon the environment in which the rule will be
used. Process flow 500 utilizes rule design processors 508,
510, and 512 for each respective rules engine 116, 118, and
120 used by system 100.

FIG. 5 illustrates three rule design processors because sys-
tem 100 is configured to use three rules engines: 116, 118, and
120. It should be understood, however, that because system
100 may be configured to use any number of rules engines,
process flow 500 may be configured to utilize any number of
rule design processors corresponding to the rules engines
used by the system. It should be understood that process flow
500 may utilize a single rule design processor for multiple
rules engines that adhere to the same interface standard. For
instance, if rules engines 118 and 120 adhere to the JSR-94
Specification referred to above, rule design processors 510
and 512 may be combined into a single rule design processor.
The processor is configured to output a translated rule that
may be understood by either rules engine 118 or 120 because
the engines adhere to the same standard.

Each rules design processor 508, 510, and 512 comprises a
rule mapper 514 and a rule processor 516. Rule mapper 514 is
configured to provide rule processor 516 with the ability to
translate intermediate contract 506 from the platform syntax
into the syntax understood by the rules engine selected to
execute the rule. Rule processor 516 analyzes intermediate
contract 506 in order to determine which rule mapper 514 to
load. Preferably the platform syntax, as defined by the rule
editors, can be used to create only a limited number of rule
formats. Thus, given knowledge of the target rules engine
syntax, it is possible to determine the ability to translate a rule
created in the platform syntax to the rules engine syntax using
one-to-one or otherwise relatively straightforward piecemeal
translations. It is therefore possible to predetermine those
platform syntax formats that can be translated in such a piece-
meal fashion. Accordingly, rule processor 516 is constructed
to analyze each incoming rule intermediate contract 506,

US 9,412,071 B2

25

determine its format among the predetermined formats (for
example, by analyzing the format itself and/or metadata pre-
viously stored in association with the platform syntax rule),
and determine whether the intermediate contract is a straight-
forward piecemeal translation. If so, the translation engine/
rule processor 516 executes the rule mapper 514 to translate
the intermediate contract. Rule mapper 514, in this example,
is a metamodel that defines a correlation between the inputs,
outputs, and functions of the platform syntax to the rules
engine syntax understood by the associated rules engine. That
is, rule mapper 514 includes a translation for some or all of the
inputs, outputs, and functions selected by the user through
design tool 132.

Some of the predetermined formats, however, may not
translate directly into the target rules engine format, for
example because of variability in the platform syntax format
or because of a lack of corresponding functions in the target
rules engine syntax. It may be possible, however, to define
predetermined template rule formats in the rules engine syn-
tax to correspond with the predetermined platform syntax
format. Thus, if rule processor 516 determines that interme-
diate contract 506 is of a format that corresponds to an exist-
ing template corresponding to the target rules engine, rule
mapper 514 pulls predetermined data from intermediate con-
tract 506, inserts the data into predetermined slots in the
corresponding template, and thereby defines the translated
rule.

Still further, however, certain of the predetermined plat-
form syntax formats may be too complicated to translate with
a metamodel mapper or with a template, for example because
the rules engine syntax rule format is not sufficiently predict-
able to define a template. However, the format of the input
rule is predictable, and the syntax of the target rules engine is
known. Accordingly, rule mapper 514 is programmed, for
example by one or more Java applets, to process the input rule
and create a corresponding rule for the rules engine.

Thus, rule processor 516 takes intermediate contract 506 in
the form of the platform metadata of the rule as an input and
maps the intermediate contract to a rule format understood by
the interface of the rules engine selected to execute the rule.
Rule processor 516 translates intermediate contract 506
based on a metamodel, templates, and/or Java applets pro-
vided by rule mapper 514. Depending on the target rules
engine, the rule mapper 514 may need one or more, but not
necessarily all, of these three mechanisms. In the presently-
described embodiment, rule processor 516 is the same trans-
lation engine for each of rule design processors 508, 510, and
512. It should be understood, however, that different rule
processors may be employed depending on the rules engine
included in system 100. The configuration of the rule design
processors vary, however, depending on the specific rule map-
per 514 loaded by rule processor 516 of the respective rule
design processor, as described above. An example of a suit-
able rule design processor 508 is the Eclipse Integrated
Development Environment (“IDE”) maintained by the
Eclipse Foundation of Ottawa, Canada.

Process flow 500 stores an association or link of the now-
translated rule, the translated rule, and the metadata identifi-
cation of the rules engine tasked with executing the translated
rule in shared rules repository 128. That is, process flow 500
stores an identifier unique to the metadata for the translated
rule. The unique identifier can be the rule’s name or a sequen-
tially created id as described above.

Information regarding a rules engine syntax may be pro-
vided by the vendor of the rules engine, such as in documen-
tation directed to an API distributed with the rules engine, or
in a standard to which the interface associated with the rules

10

20

25

30

35

40

45

55

60

26

engine adheres. For example, a vendor of rules engine 116
may provide an API as interface 122 associated with the rules
interface. The vendor may also provide documentation,
which may be included in the API, that defines the syntax
understood by rules engine 116 via interface 122. Thus,
design tool 132 may be configured to translate any rule
defined by a user into the syntax understood by interface 122
as set forth in the material associated with rules engine 116.

The foregoing description of exemplary embodiments pro-
vides illustration and description, but is not intended to be
exhaustive or to limit the invention to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from practice of the
invention. For example, while a series of acts has been
described above, the order of the acts may be modified in
other implementations consistent with the principles of the
invention. Further, non-dependent acts may be performed in
parallel.

The names assigned to variables, tables, and other data
structures herein are exemplary only, and are not meant to
restrict the invention to particular implementations. Any
name may be applied to the data structures used herein, and
the names assigned to the data structures should not be inter-
preted to limit the type, characteristics, or structure ofthe data
structure in any way.

In addition, implementations consistent with principles of
the invention can be implemented using devices and configu-
rations other than those illustrated in the Figures and
described in the Specification without departing from the
spirit of the invention. Devices and/or components may be
added and/or removed from the implementations of the fig-
ures depending on specific deployments and/or applications.
Also, disclosed implementations may not be limited to any
specific combination of hardware.

Furthermore, certain portions of the invention may be
implemented as logic that performs one or more functions.
This logic may include hardware, such as hardwired logic, an
application-specific integrated circuit, a field programmable
gate array, a microprocessor, software, wetware, or a combi-
nation of hardware and software.

While one or more preferred embodiments of the invention
have been described above, it should be understood that any
and all equivalent realizations of the present invention are
included within the scope and spirit thereof. The embodi-
ments depicted are presented by way of example only and are
not intended as limitations upon the present invention. Thus,
it should be understood by those of ordinary skill in this art
that the present invention is not limited to these embodiments
since modifications can be made. Therefore, it is contem-
plated that any and all such embodiments are included in the
present invention as may fall within the scope and spirit
thereof. The scope of the invention is defined by the claims
and their equivalents.

What is claimed is:

1. A system for facilitating communication between one or
more applications and a plurality of rules engines, the system
comprising:

a design tool configured to provide a platform syntax for
defining rules for the one or more applications and to
associate each rule with a respective predetermined one
of the plurality of rules engines, wherein the association
of each rule with the respective predetermined one ofthe
rules engines is based on predetermined criteria;

a rule processor configured to translate each rule defined
using the design tool from the platform syntax into a
rules engine syntax of the respective predetermined one
of the rules engines;

US 9,412,071 B2

27

a repository configured to store each rule, each translated
rule defined using the design tool, an association of each
rule defined using the design tool to its respective trans-
lated rule, and the association of each rule defined using
the design tool with its respective predetermined one of
the rules engines; and

a rules execution platform configured to receive a request
from one of the one or more applications to execute one
of the rules defined using the design tool, identify the
respective predetermined one of the rules engines asso-
ciated with the requested rule, and transmit the requested
rule to the respective predetermined one of the rules
engines associated with the requested rule.

2. The system of claim 1 wherein the predetermined crite-
ria comprises an environment in which the design tool is
initiated.

3. The system of claim 1 wherein the predetermined crite-
ria comprises information corresponding to a user that
defined the requested rule using the design tool.

4. The system of claim 3 wherein the information com-
prises a role of the user.

5. The system of claim 4 wherein the role comprises a
functional role of the user.

6. The system of claim 1 wherein the design tool is config-
ured to present various views depending on a role of a user
accessing the design tool.

7. The system of claim 6 wherein the role comprises a
system role.

8. The system of claim 1, wherein the association of each
rule defines using the design tool with its respective prede-
termined one of the rules engines is stored in metadata asso-
ciated with the rule.

10

15

20

25

30

28

